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Abstract— It is conceivable that a random sample
of a population consisting of various species likely fail
to include a representative from all the species in the
population. For example, if our sample is a piece of
text, and the population is a language, it is quite likely
that the text won’t contain every word in the language.
It is natural to wonder about the parts of the popula-
tion that are not seen by the sample and question how
representative the sample is. Our aim in this manu-
script is to present methods for estimation of the pro-
portion of unseen species and various application of
this general problem along with their historical con-
text. The most striking case for these techniques took
place during the second world war in the British ef-
fort to crack the German’s enigma code. An estimator,
which we will look at deeply, known as the Good-Tur-
ing estimator was discovered out of necessity by Allen
Turing and proved to be invaluable in breaking the
code. It may seem like some of the estimators we will
discuss are designed to solve the same problem. We
will attempt to shed some light on their differences
through experiments on a curated data set.

I. THE MISSING MASS PROBLEM

Suppose we take a sample of size n from a population
with s mutually exclusive categories where s is unknown. In
other words, we have asample X = X, ..., Xy where X, €
Cj,forz' =1...Nandj = 1, ...s. In the sequel, we will refer to
the observations as specimens and the categories as species.
A general question we often try to address in statistical and
data science is “what can we learn about the population as
a whole?” For example, it might be desirable to know how
many total species there are. And more specifically, if each
observation is an animal from a specific region, we may want
to know how many different species living in that region. We
may also want to predict the category to which the next ob-
servation belong or estimate the probability that the next ob-
servation belongs to a given class of species, perhaps species

not seen before. Various approaches to answering these, and
similar, questions will be explored in this paper.

To answer the first question, we need to have an estimate
of the number of unseen species. To mathematically formal-
ize, and slightly generalize this question, we can express the
first question as finding an estimator 7" such that

E[T(X)] = p (1)
where p = [py, ..., p;] is @ vector representing the population
frequency for each species frequency. This means each p;
represents the probability that if we make another observa-
tion, it will be of a species which has already appeared i
times in our sample and that

l
dop=1 (2)
i=0

Do represents the probability that the next observation has
not already been seen in the sample; this is referred to as
the “Missing Mass”. The answer to this question is the Good-
Turing estimator [1] which we will look at in depth later.

Related to the above formulation, we may wish to find an
estimator 7}, such that

E[Ty(X)] =U (3)

where U represents the number of new species we can ex-
pect to observe if we take another sample of size k - IV from
the same population. There exists a unique unbiased estima-
tor for this problem found by Good and Toulmin [2] also to
be examined in later sections.

II. ORIGINS

In the 1930s, Corbet and Williams were both conducting
experiments which involved collecting bug specimens and
classifying them by species. Before 1942, there had been no
attempt to find a relationship between the number of indi-
viduals and the number of species in a sample. In 1943 Cor-
bet, Williams, and Fisher came out with a paper titled “The
Relation Between the Number of Species and the Number
of Individuals in a Random Sample of an Animal Popula-
tion” [3]. Corbet found he could relate the number of indi-
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viduals to the number of species in a Mylan Butterfly popu-
lation using the formula
c

S=xm (4)
where S is the number of species, C' and m are constants,
and N is the sample size. Fisher extended this idea finding
a model which only depends on one constant « to represent
the richness or diversity of a species and obtained the for-

mula

S=a1n<1+g) (5)

The constant « can be found graphically. A higher value of «
indicates a more diverse population. We will later compare
(5) to more modern approaches by Good, Toulmin and Tur-
ing.

ITI. ENIGMA

A. What was Enigma?

During Word War II, the Germans used a device called an
“Enigma Machine” to encode messages containing sensitive
information. The machine had over 150 trillion possible set-
tings, each providing a unique encryption/decryption map-
ping. The code was notorious for being unbreakable but that
didn’t stop the British from trying. They assembled a team of
code breakers at a mansion in the countryside which housed
a cryptography institute known as Bletchley Park. Amongst
these code breakers was Allen Turing. Turing is widely cred-
ited as being the keystone in the effort of cracking Enigma
and became the creator of the first computer or “Turing Ma-
chine” in the process. The team finally broke the code in
1941 and was able to provide intelligence to the British forces
instrumental to the success of the allies. It is said that with-
out this information, the war would have gone on for years
longer than it did and there would have been no guarantee
of the allies winning [4].

B. The Enigma Machine

The Enigma machine was used for both encoding and
decoding messages. The machine itself was of no use in de-
coding a message unless the recipient knew what settings
were used to encode the message. This machine was not
kept secret by the Germans, and the allies got their hands
on one very early in the war. The Germans had so much
confidence in Enigma that they did not try to send the en-
crypted messages secretly and many were intercepted. The
machine itself consists of 3 rotors (which can be chosen out
of a set of 8 total rotors) to scramble the letters and a peg-
board which performs additional scrambling. The machine
seen in Figure 1 is an Enigma I machine. There are other
versions of Enigma but this was the one which the team

at Bletchley Park was focused on cracking. It has a total of
103,325,660,891,587,134,000,000 possible encryptions [5].

Figure 1: Three rotor Enigma I Machine on display at the
Bletchley Park museum

C. Tri-gram Frequency Estimation

To decode Enigma, the recipient needs to apply the same
settings to their Enigma Machine that the sender used to en-
crypt the message. Each message includes a tri-gram (three
letters) at the beginning which tells the recipient how to set
the rotors on their Enigma Machine. More settings must be
applied and more steps must be taken to decode a message
but this rotor setting is what is relevant to us. The trigrams
used are supposed to be random, and taken from a book pro-
vided by German intelligence. Turing realized that this was
not entirely true and some tri-grams, like those appearing
at the tops of the pages in the book, were more likely to be
used [6]. We think of each tri-gram as a species, and every
possible tri-gram in the German book as being the popula-
tion. Another random letter was added to each tri-gram be-
fore it was sent in the message, so the tri-grams were slightly
obfuscated. The team at Bletchley Park realized it would be
very helpful to know which tri-grams had a high probabil-
ity of appearing next. It would serve as a starting point for
guessing the tri-gram in each message. This is where Tur-
ing first came up with his method for unknown species fre-
quency estimation. The estimator is called the “Good-Turing
estimator” and will be discussed in more details in the next
section.

D. Good-Turing NLP

The Good-Turing method was developed to study the fre-
quency of tri-grams and continues to be useful for similar
tasks. in 2013, Huang et al published a paper [7] looking
at the efficacy in using the Good-Turing estimator to solve
the zero weights problem in Chinese language models. The



zero weights problem arises while training language mod-
els when the training corpus does not contain an example of
every token in the population. These unseen tokens are as-
signed a weight of zero which inaccurately represents their
probability of appearing outside the training corpus. The
smoothing methods discussed later in Section V.C are de-
signed to provide a non zero estimate for these unseen val-
ues. The paper by Huang et al [7] looks at Chinese n-gram
models. Due to the large number of characters in the Chi-
nese alphabet, many tokens fall victim to the zero weight
problem. The paper finds Good-Turing smoothing provides
an effective remedy to this issue.

IV. OTHER NOTABLE APPLICATIONS

A. Palomar Green Survey

In 1988 Peter Thejll and H.L. Shipman [8] wrote a paper
which uses Fisher’s method [3] to gain insight on data col-
lected in the Palomar Green astronomical survey. Consider-
ing classes of astronomical objects as species, one can see
the direct applicability of using this type of estimator. Their
goal was to provide an estimate for the size of survey which
would be needed to discover new objects in each class. They
concluded that if the Palomar Green Survey would be re-
peated at the same scale on another part of the sky, it is likely
that one or two types of new objects would be discovered.
Having access to this information plays a role in discussions
on where to allocate resources for future experiments. In
their paper, Thejll and Shipman also analyzed observations
from the McGraw Transit Telescope. They found that it was
unlikely for any new classes of white dwarfs would appear,
but expected to see roughly twelve unseen before galaxy like
objects.

B. Efron Thisted 4+ Shakespeare

B. Efron and R. Thisted used this idea to give an estimate
for the total number of words types that Shakespeare knew
[9]. They took the sample to be his collected works, and were
able to find a lower bound that Shakespeare knew at least
35 000 more word types than the 31 543 that originally ap-
peared in his works. This means that the number of unique
species in the population (number of words Shakespeare
knew) was over 67 000. In this paper, Efron and Thisted
also re-designed the Good-Toulmin estimator which we will
talk about later in Section VI.B.1 and were able to greatly
improve its efficacy.

V. GOOD-TURING ESTIMATOR

A. A Naive estimator

If we are given a sample of N species, intuitively, we might
guess that the expected value of observing a species which

appears r times in the sample can be estimated as
r

Elg,] = (6)
where g, is the event that we observe a species appearing
r times in the sample. It makes sense that the probability
of observing a species should be proportional to how com-
mon it is. Unfortunately, this simple estimate does not tell
the whole story. Unless the sample is sufficiently large, there
will be species that do not appear at all. The “naive” estima-
tor in (6) assigns these unseen species a probability of zero
and misrepresents the underlying distribution.

B. An Improved Estimator

In 1953 L.J. Good published a paper [1] presenting Tur-
ing’s solution to the problem. He realized that the number
of species which appear r times, say n,., should differ from
the number of species which appear r 4- 1 times, n,., ;, by an
amount proportional to . His improved estimate is that

*

Elg] = % (")
where
r*=(r+ 1)% (8)

ny

We can see that r* is essentially a proxy for r which takes
into account the value of n,._ ;.

C. Smoothing

The Good-Turing estimator which we have discussed so
far makes an estimate for ¢, depending only on r, n,., ;, and
n,.. All of the information we use is taken from a two data
points in the observed distribution of n,’s. If the sample size
is small, the data at this point may be noisy making it a poor
representation of the actual distribution. The solution to this
is to smooth the observed n,’s before feeding them into the
estimator. Each n,. is the cardinality of a bucket containing
all the species observed r times. The idea of smoothing is
that we can move some species in bucket r to its neighboring
buckets (r — t) and (r + ¢), for reasonable values of ¢, with
the goal of removing noise from the distribution. There are
lots of techniques that can be used to smooth the observed
n,’s but many can be computationally expensive or difficult
to estimate. The most common smoothing method is called
linear smoothing [10]. It uses the assumption that the fre-
quency of species frequencies is modeled by exponential de-
cay. This allows for a linear fit when the n,’s are plotted on
a log-log scale. There is not enough data for this trend to be
visible at higher values of r so the data used for the linear fit
is truncated to only include values of ~ which are sufficiently
represented. Once the fit has been obtained, the buckets can



be rebalanced and the linear trend can be extrapolated to in-
clude the larger values of r which are often less represented.

D. Properties

1) Bias: in 1994 B. H. Juang and S. H. Lo published an
analysis of bias [11] of the Good-Turing estimator. They
found that the order of the bias is

(3

where N is the sample size. For this reason, the estimator is
considered to be “nearly unbiased”, and unbiased for large
values of V.

2) Variance: In the original paper by Good [1], it is proven
that the variance of the estimator is given by

(r+1)(r+2)n.y (r—l— 1nr+1>2 (10)

Var(T,) = N - N n

where T, is the estimate of the rth population frequency, n,.
is the number of species which are observed r times in the
sample, and N is the sample size.

3) Consistency: An estimator 7T,, which estimates a para-
meter 6 is strongly consistent if

Pr Tnze}zl

T T

lim o
Meaning that the estimate converges almost surely to the ac-
tual value. Proving the consistency of the Good-Turing esti-
mator is difficult as the distribution of the species frequen-
cies depends on the sample size. If the sample is small, a
large number of species will have been unseen and the miss-
ing mass p, will be large. As more observations are made,
po Will shrink because an increasing number of species will
have at least one representative in the sample. Aaron B.
Wagner et al were able to prove that the estimator is strongly
consistent in 2006 [12].

4) Rate of Convergence: In 2000 David McAllester and
Robert E. Schapire [13] (2000) found PAC (Probably Approx-
imately Correct) confidence intervals for the population fre-
quencies (p,’s) and the missing mass. Let 7, be the Good-
Turing estimate for the population frequency of r, they
found that for any sample of size N, with probability greater
than or equal to 1 — 4, the following holds.

r+2 2111(%)
T — <
T =Pl <y +t\—x
lr+1
X T
1-%

(12
o)) ()

and that the missing mass has a tighter upper bound of

In(3)

N

po < Ty + (2V2+V3) (13)

E. Implementation

The implementation used for the experiments to come
later in this paper is based on the method described in the
paper titled “Good-Turing Frequency Estimation Without
Tears” [10]. It uses the method of linear smoothing and pro-
vides a guide to implement this technique on modern hard-
ware.

VI. GOOD-TOULMIN ESTIMATOR

A. Original Estimator

We have discussed the Good-Turing estimator as a means
for estimating the population frequencies of each species.
We find the probability that the next observation will be from
a specific species. Another question we can ask is if we in-
crease the sample size by a factor of k, what proportion of the
new sample will have been unseen in the old sample. This is
the purpose of the Good-Toulmin estimator [2] Introduced
in 1956. This paper builds on many of the ideas in Good’s
earlier paper on the Good-Turing estimator [1].

The main idea of the estimator is very simple and elegant:
If we count up all the species which appear an even num-
ber of times or an odd number of times, in the absence of
any other knowledge about the frequencies, it is reasonable,
according to the Laplace’s Principle of Insufficient Reason
(also called Principle of Indifference), to expect the same

value. Formally, this can be expressed as
R

- Z (_k)i "1y

i=1

Ut = (14)
where UFT is the number of new species that will be ob-
served if the sample size is increased by a factor of k, and R
is the largest r for which n,. is non-zero.

B. Improvments

The above estimator found good results when k£ < 1. The

MSE of this estimator is given by

E[U —UST)? < nk? (15)
The problem is, when k > 1, the error grows very quickly or
“super-linearly”. The original paper [2] discusses possibili-
ties to rectify this divergence but doesn’t provide any formal
results.

1) Efron-Thisted: In 1976, Efron and Thisted [9] Improved
on the work of Good and Toulmin and found an estimator
which could make good predictions in some cases where
k > 1 using the Euler transform. While their method had
good results in practice, it proved difficult to bound theoret-
ically.

2) Orlitsky: In 2016, Orlitsky et al [14] published a result
which found an estimator with provably good performance
for values of k£ > 1. The paper provides a class of estimators
which give provably good predictions for values of k propor-
tional to the logarithm of the sample size.



Orlitsky’s Improved estimator can be expressed as the fol-
lowing linear combination of prevalences

Uy ==Y (=k)'Pr(L; > 1) n,

i>1

where L is a tail distribution. This estimator accomplishes
the same thing as randomly truncating the alternating se-
ries so that the last term does not dominate the sign. Orlit-
sky also found that by taking L, ~ Bin(k, Flk) the result-
ing estimator will be equivalent to Efron and Thisted’s es-
timator. He discovered the optimal tail distribution to be
Ly~ Bin( |} log, (ZTki)J . 723 )- We will refer to this version
of the estimator as Smoothed Good-Toulmin (SGT). The ap-
pendix of Orlitsky’s paper [14] also contains the proof that
the original Good-Toulmin estimator is the unique unbiased
estimator for U,

(16)

VII. EXPERIMENTS: ESTIMATING THE NUMBER
OF UNSEEN SPECIES

A. Benchmark Data

The data-set which will be used to compare performance
of the estimators will be drawn from the beta-binomial dis-
tribution with parameters o = 1, 8 = 6.5 for reasons to be
discussed in this section. If we want to accurately test the es-
timators, it is important to know the data generating process.
It enables us to calculate the expected values of species fre-
quencies and compare them against those found by the esti-
mators. The beta-binomial distribution allows for the bino-
mial assumption to be made which is a condition for using
the Good-Turing estimator [1]. It also has two shape para-
meters enabling us to control the shape of the data. The pa-
rameters have been chosen to mimic natural language data
which is the most common application of the Good-Turing
and Good-Toulmin estimators. This is illustrated in Figure 2
and Figure 3 where we look at the normalized frequency
frequencies (n,.) for our test data set compared to frequency
frequencies found in Shakespeare’s Macbeth. This is a use-
ful representation of the data as the estimators discussed use
the species frequency frequencies to make their estimates.

Normalized values of n, for Generated and Organic Data
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Figure 2: Comparison of the normalized number of species
with r representatives coming from BetaBinomial(a =
1, 8 = 6.5) and Shakespeare’s Macbeth
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Figure 3: A log-log plot of normalized number of species
with r representatives from each dataset

B. Toulmin, Turing and Fisher

1) Estimators: The Good-Toulmin estimator answers the
question of what proportion of a sample of size k- N will
have been unseen by the existing sample (of size N). The
Good-Turing estimator gives the probability of seeing a spe-
cific species which has already been seen some number of
times in the sample (or not at all). It is possible to use the
probabilities found by Good-Turing to estimate the number
of unseen species in a sample of size k - N.

Recall that the Good-Turing estimator outputs values p;
which is the probability that the next observation will be-
long to a species which has been seen ¢ times in the original
sample. The value p,, corresponds to the probability that the
next observation will have not yet been seen in the sample.
We can estimate U, the number of new species that will be
found in a new sample of size N as follows

U=py N (17)
This is equivalent to setting £ = 1 when using the Good-
Toulmin estimator.



Fishers method gives equation (5) which also relates the
size of the sample to the number of unique individuals S.
Using a sample of size N we can find a value for « and pre-
dict S for a sample of size 2 - N.

2) Comparison: Figure 4 shows the estimates made by
each method on our benchmark dataset for £ = 1. The val-
ues plotted are the predicted numbers of unique species seen
by a sample of half the size. For example, at z = 1000, the y
-value corresponds to a prediction for the number of unique
species in a sample of size 500 made by an estimator with ac-
cess to 250 data points. A Monte-Carlo simulation was car-
ried out in the following manner: each estimator was given
1000 randomly generated samples of the same size from the
benchmark data and the outputs were averaged to get the
values seen in Figure 4 and Figure 6.

Estimating # of Species in Twice the Sample Size

Actual —
Good-Toulmin o
Good-Turing —
Fisher

300
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2000 3000 4000 5000
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10‘00
Figure 4: Estimator predictions for number of unique
species seen using a sample of size |V + 2]

Estimating # of Species in Twice the Sample Size

Actual _—
Fisher —

25.0

225 —

_—

o

e

-~

200

175

15.0 ¢

Predicted Number of Unseen Species

125 f ‘."‘

L | ' L
2000 3000 4000 5000

Sample Size

L
1000

Figure 5: Estimator predictions for number of unique
species seen using a sample of size | N + 2| with data from
BetaBinomial(« = 0.2, 8 = 100)
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Figure 6: MSE of estimators seen in Figure 4

3) Discussion: Figure 4 shows the Good-Toulmin estimator
as being indistinguishable from the actual value. In Sec-
tion VI.B.2 we saw that Orlitsky [14] found Good-Toulmin
to be the unique unbiased estimator. Therefore, over a long
run averaging simulation like this, it makes sense that the
estimate should approach the actual value.

In Figure 4, the Good-Turing estimator Consistently over-
estimates the number of new species that will appear in a
sample of twice the size. This is due to an inaccuracy in
the way which we are using the estimator outlined in Sec-
tion VIL.B.1. The probability p, given by the Good-Turing es-
timator is the probability that the next observation will be
previously unseen. We assumed that this value would stay
constant for the next IV observations when in reality it would
change as we observe more information about the popula-
tion. For this reason, the Good-Toulmin estimator should be
used in place of the Good-Turing estimator when estimating
the number of unseen species in a larger sample.

Fisher’s estimator is more primitive than the other two
and based on a very different method. We see in Figure 4 it
consistently over estimates the actual value. This however,
depends on the distribution. Looking at Figure 5, we can see
that when the beta-binomial parameters are set to a = 0.2,
B = 100, the estimator underestimates the actual value. For
some distributions, Fisher’s estimator will be very close to
the actual but is not as reliable as Good and Toulmin’s.

C. Improved Good-Toulmin Estimators

1) Efron Thisted and Orlitsky: We have seen that the ob-
vious choice for estimating how many unique species there
will be in a larger sample is the Good-Toulmin estimator.
However, as discussed in Section VI.B the standard Good-
Toulmin estimator is still only capable of making good esti-
mates for samples at most twice the size of the original. Here
we will compare the original estimator to the improved ver-
sions by Efron and Thisted [9] and Orlitsky [14] who claim



to be able to make accurate estimates for larger multiples of
the sample size.

2) Experiment:

Using the benchmark dataset, a sample of size 1000 was
generated and used by each estimator to predict the number
of new species that would be seen in a sample of size N -
(1+ k). Efron and Thisted’s estimator is labled as ET and
Orlitsky’s smoothed estimator is labled as SGT.

Predicted # of Unique Species for Sample Size k- N

200 -

=200

— 5GT
Good-Toulmin
ET

Predicted number of unseen species

—400 - Actual

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Multiple of sample size (k)

Figure 7: Comparison of Good-Toulmin type estimators es-
timating the number of unique species in a sample of size
N -(1+4+k)
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Figure 8: Comparison of improved Good-Toulmin type esti-
mators estimating the number of unique species in a sample
of size N - (1+ k)
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Figure 9: Error in improved Good-Toulmin type estimators

3) Discussion: As discussed in section Section VI.B, the stan-
dard Good-Toulmin error has super-linear MSE when & >
1. This is exactly what we see in Figure 7 where the Good-
Toulmin estimator’s estimate becomes unusable for £ > 1.2.

Looking at Figure 8 and Figure 9, we see that both ET and
SGT do significantly better and are able to make usable es-
timates up until around k£ = 4. After this point, ET begins
to consistently over estimate and is no longer usable. SGT is
able to stay relatively close to the actual value right up to
k = 8 but begins to vary more for values of k > 6. Orlitsky’s
paper [14] claims that SGT should be able to make good es-
timates up to k = log(NV). For a sample of size 1000, we get
log(1000) ~ 6.9. When 4 < k < 6.9, we can see in Figure 9
that the errors for SGT are lower than ET but more impor-
tantly, they does not appear to be diverging from the actual
value.

The purpose of this experiment has been to illustrate
the performance differences between different implementa-
tions of Good-Toulmin estimators, not to formally verify any
results. Formal proofs can be found in Orlitsky’s paper [14].

VIII. CONCLUSION

We have seen how the wish of building better picture of
a butterfly population from a small sample has grown into
a rich area of study. Though the initial ideas presented by
fisher were rudimentary, they provided an entry point for
others to study the Missing Mass Problem. Turing made the
next major leap in the effort to crack Enigma during WWIL
Good not only formalized and presented the work of Turing,
but also worked with Toulmin to expand its utility coming
up with a new class of “Good-Toulmin” estimators. In the
following years improvements were made to this class of
estimators, most notably by Efron and Thisted who greatly
improved on Good and Turings work, but still, many prop-
erties of the estimators in this class had no theoretical back-



ing. Orlitsky brought us formal proofs as well as an optimal
estimator.

Finally, we saw some experiments that show why the
above advancements were necessary. While Fisher’s model
was capable of making viable predictions, it was suscepti-
ble to being biased. Good-Turing was not designed to esti-
mate the number of unseen species, and naively adapting it
for this purpose was not enough. These shortcomings gave
us the Good-Toulmin estimator. Still, it was only capable of
making predictions for samples up to twice the size. This is-
sue was later solved in the work of Orlitsky. Building on re-
sults from Efron and Thisted, he lets us predict the number
of unknown species in a larger, theoretical sample with size
up to N - log(IN) where N is the size of the original sample.
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